Comparing hosted and open source search solutions
Build vs. buy: key factors to consider before making the decision.
Sorry, there is no results for this query
Jun 5th 2014 product
Since the first SaaS IPO by salesforce.com, the SaaS (Software as a Service) model has boomed in the last decade to become a global market that is worth billions today. It has taken a long way and a lot of evangelisation to get there.
Before salesforce.com and the other SaaS pioneers succeeded at making SaaS a standard model, the IT departments were clear: the infrastructure as well as the whole stack had to be behind their walls. Since then, mindsets have shifted with the cloud revolution, and you can now find several softwares such as Box, Jive or Workday used by a lot of Fortune 500 companies and millions of SMBs and startups.
Everything is now going SaaS, even core product components such as internal search. This new generation of SaaS products is facing the same misperceptions their peers faced years ago. So today, we wanted to dig into the misperceptions about search as a service in general.
Some people prefer to go on-premises as they only pay for the raw resource, especially if they choose to run open source software on it. By doing this, they believe they can skip the margin layer in the price of the SaaS solutions. The problem is that this view highly under-estimates the Total Cost of Ownership (TCO) of the final solution.
Here are some reasons why hosting your own search engine can get extremely complex & expensive:
A search engine has the particularity of being very IO (indexing), RAM (search) and CPU (indexing + search) intensive. If you want to host it yourself, you need to make sure your hardware is well sized for the kind of search you will be handling. We often see companies that run on under-sized EC2 instances to host their search engine are simply unable to add more resource-consuming features (faceting, spellchecking, auto-completion). Selecting the right instance is more difficult than it seems, and you’ll need to review your copy if your dataset, feature list or queries per second (QPS) change. Elasticity is not only about adding more servers, but is also about being able to add end-users features. Each Algolia cluster is backed by 3 high-end bare metal servers with at least the following hardware configuration:
This configuration is key to provide instant and realtime search, answering queries in <10ms.
It is a general perception of many technical people that server configuration is easy: after all it should just be a matter of selecting the right EC2 Amazon Machine Image (AMI) + a puppet/chef configuration, right? Unfortunately, this isn’t the case for a search engine. Nearly all AMIs contain standard kernel settings that are okay if you have low traffic, but a nightmare as soon as your traffic gets heavier. We’ve been working with search engines for the last 10 years, and we still discover kernel/hardware corner cases every month! To give you a taste of some heavyweight issues you’ll encounter, check out the following bullet points:
We’ve been working hard to fine-tune such settings and it has allowed us to handle today several thousands of search operations per second on one server.
Upgrading software is one of the main reasons of service outages. It should be fully automated and capable of rolling back in case of a deployment failure. If you want to have a safe deployment, you would also need a pre-production setup that duplicates your production’s setup to validate a new deployment, as well as an A/B test with a part of your traffic. Obviously, such setup requires additional servers. At Algolia, we have test and pre-production servers allowing us to validate every deployment before upgrading your production cluster. Each time a feature is added or a bug is fixed on the engine, all of our clusters are updated so that everyone benefits from the upgrade.
On-premises solutions were not built to be exposed as a public service: you always need to build extra layers on top of it. And even if these solutions have plenty of APIs and low-level features, turning them into end-user features requires time, resources and a lot of engineering (more than just a full-stack developer!). You may need to re-develop:
Securing a search engine is very complex and if you chose to do it yourself, you will face three main challenges:
Mastering these three areas is difficult, and API providers are challenged every day by their customers to provide a state-of-the-art level of security in all of them. Reaching the same level of security with an on-premise solution would simply require too much investment.
People tend to believe that search as a service is only good for basic use cases, which prevents developers from implementing fully featured search experiences. The fact of the matter is that search as a service simply handles all of the heavy lifting while keeping the flexibility to easily configure the engine. Therefore it enables any developers, even front-end only developers, to build complex instant search implementation with filters, faceting or geo-search. For instance, feel free to take a look at JadoPado, a customer who developed a fully featured instant search for their e-commerce store. Because your solution runs inside your walls once in production, you will need a dedicated team to constantly track and fix the multiple issues you will encounter. Who would think of having a team dedicated to ensuring their CRM software works fine? It makes no sense if you use a SaaS software like most people do today. Why should it make more sense for components such as search? All the heavy lifting and the operational costs are now concentrated in the SaaS providers’ hands, making it eventually way more cost-efficient for you..
Build vs. buy: key factors to consider before making the decision.
Powered by Algolia Recommend